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1. INTRODUCTION

We focus attention in this paper on how the general quantum many-body
problem can be cast in the form of a variational principle for a specified
action functional. After some preliminary discussion in Section 2 concer-
ning the algebra of the many-body operators and the development of a conve-
nient shorthand notation to describe it, we show in Section 3 how each of
the configuration-interaction (CI)1 method, the normal coupled cluster
method (CCM),2-6 and an extended version of the CCM,7,8 can be derived by
specific parametrisations of the ground-state bra and ket wavefunctions in
the action functional. In each case we make contact and comparison with
time-independent perturbation theory, and we discuss the various "tree-
diagram" structures that emerge in each case.

As is widely appreciated by now, the CI method contains unlinked dia-
grams for the energy, no generalised time-ordering (g.t.o.) properties, and
suffers accordingly from the size-extensivity problem.6 By contrast, the
normal CCM takes account of the linked-cluster theorem,9,IO has a well-
known g.t.o. structure ("backwards in time") which leads to connected dia-
grams for the energy of the normal tree structure (in which each link is a
group of particle or particle-hole lines parametrised by some configuration-
space index s), and does not suffer from the size-extensivity problem.
Although evaluation of the energy does not require the bra ground state, it
is needed for the expectation values of other operators, and in the normal
CCM the operators parametrising the bra ground state are not linked.
Practical problems can thereby still arise as for the CI method. Finally,
it is shown how maximal use is made of the linked-cluster theorem in the
extended CCM, and how each of the amplitudes cr(s) and ;(s) which now
completely specify the bra and ket ground states, is fully linked and is
hence quasi-local in the sense of obeying the usual cluster property. We
point out how the extended CCM (ECCM) can also be cast in the form of gener-.
alised tree diagram structures that now have a g.t.o. property both forwards
as well as backwards in time.
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In view of the above properties. the remainder of this paper is concerned
with the ECCM. Just as the normal CCM is intimately connected with a simi-
larity transformation,2 as is by now well-known. so the ECCM contains a
double similarity transformation. In Section 4 we show how various matrix
elements involving the double similarity transform of an arbitrary operator
can be related to the functional derivatives with respect to the basic ampli-
tudes a.a of the average-value functional for the original operator. We
hence show how the average values of arbitrary operator products can be
evaluated. These results are applied in Section 5 to the very important case
of operator commutators. and in so doing we show very explicitly how a set of
generalised Poisson brackets naturally arises. and how thereby the general
many-body ground-state problem can be formally mapped exactly onto the classi-
cal hamiltonian mechanics for the many-body. classical (c-number), quasi-
local. configuration-space fields a(~) and cr(~). This discussion is
extended in Section 6 to show how a generalised mean-field theory can be
exactly associated with the original many-body quantum theory. in terms of a
set of generalised coherent states defined in some (fictitious) boson Hilbert
space ttB• which can itself be associated with the original Hilbert spaceH. In this way we develop an exact correspondence between the generalised
coherent states in f{B and the states representable in 1t via the ECCM as
previously described. The quantum many-body problem in ft is ghuS exactly
"bosonised" into a (semiclassical) effective boson theory in it which is
to be treated at the (generalised) mean-field level only. Finally, we
compare this new "bosonisation" procedure with previous such methods in
Section 7, where further extensions and applications of the ECCM are also
briefly discussed.

2. OPERATOR ALGEBRA IN THE MANY-BODY HILBERT SPACE

It is typical of many quantum-mechanical calculations that the construc-
tion of states belonging to the full Hilbert space it, is based on some
initial or model state I~>. This is often. but not necessarily chosen to be
some suitable state that the system would otherwise be in when (some part of)
the interactions are turned off. We start here with such a state I~>, and
assume furthermore that the algebra of all operators in it is spanned by the
two subalgebras of creation and destruction operators defined with respect to
the given model state I~>. We assume further that these two subalgebras and
the state I~> are eyalia in the sense that all of the ket states in 1-t
can be constructed from linear combinations of the states reached by opera-
ting on I~> with the elements of the creation operator subalgebra; and
similarly for the bra states with respect to the state <~I.

We introduce a very convenient shott-hand notation for the general
creation and annihilation operators, C (~) and C(~) respectively. where
the label ~ is intended to represent a subset of any suitable complete set
of general configuration-space indices. As an example. if I~> is chosen to
be the vacuum of a many-boson system, so that a.I~> = 0 for all single-
boson destruction operators a., then we may ch~ose~

m _1 t n .
II (n, !) 2 (a. ) ~i=l ~ a

.(la)

and the configuration ind~~ ~ 7 {n.} is a shorthand for any such set of
integers (n1, n2, ..• nm). ·AIternaEively, in real space we may write

_1
(m!) 2

m
II

i=l
t 7

a (x, )~ (lb)

7 7and the configuration index ~ ...•.(Xl,x2' +x). In any case we assume
m
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that with any such appropriate configuration
in ft can be resolved as,

I I~><~I + J' d~ ct(~)I~><~lc(~)

f d~ ct(~)J~><'IC(~)

space, the identity operator I

(2)

in terms of a normalised set of creation and destruction operators,

15 (~ - ~ ') , (3)

and where the integral over ~ in Eq.(2) must as usual be interpreted as a
sum for discrete configuration-space labels. We also point out our convention
in Eq.(2) that a prime on the integration symboltindicates the restriction
that we include only those creation operators C (~) which create at least
one particle. Conversely, an integration with no prime also includes the
model state itself, that is Ct(O) = I is included.

The reader should take careful note of our shorthand notation now, since
it is quite vital for later formal developments. Without this compact nota-
tion, our later formulae would become very complicated. Worse still, they
would be system-dependent. We note that our formalism is very general, and
the extension to systems of fermions or spin-algebraic systems etc. is, at
least in principle, straightforward. However3 for the purposes of the
remainder of this paper3 we shall henceforth restrict ourselves to bosonic
systems.

As indicated previously, we now assume that an arbitrary ket state IK>
in 1{ can be written as

IK> (4)

and similarly for an arbitrary bra state.

For later use we will also find it very useful to develop a notation for
compounding configuration indices. We shall denote these by the ordinary
symbols of addition and subtraction, e.g. (~+ ~') and (~- ~'), but it
is clear from our prior discussion that these cannot possibly be interpreted
in the usual arithmetical sense. Instead, we give the very specific defini~
tions,

C(~')C(O
(5)

C(~I)ct (~)I~>;

Since the operator ct(~_~I) is thus, more specifically, defined to be the
creation part (with respect to I~» of the full contraction of the product
C(~')ct(~), it is clear that it is non-zero only when the index set ~' is
a proper subset of the index set ~. We may similarly then define compounded
expansion coefficients,

k(~+~') - <~IC(~)C(~') J dn k(n)ct(n)I~>

k(~-~') - <~Ic(oct(~,) f dn k(n)ct(TJ)I~>
(6)

The reader should be warned, in case of later temptation, that these opera-
tions of addition 'or subtraction on the configuration indices are generally
neither associative nor commutat.Lve, e.g. k(~+(~'-~"» ~ k«~+~')-~");
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although k(~-(~'+~"» = k«~-~'}-~").
form of Wick's theorem (for bosons) can
reads as

C(~')ct(~) f dnct(~-n)C(~'-n)

Finally, we note that a very useful
be proved which, in our notation,

(7)

3. DYNAMIC VARIATIONAL PRINCIPLE AND GENERALISED TREE DIAGRAMS

For later purposes we shall not wish to restrict ourselves to hamilto-
nians, or their relevant subsequent transforms, that are necessarily hermi-
tian. Hence, with complete generality we denote the fround-state bra and ket
states of the exact many-body hamiltonian H as <~, and I~>, where

<~, IH = E<~' I (8)

corresponding to ground-state energy E. If either the hamiltonian depends
on time or if the system is not in equilibrium, we must use the time-
dependent Schr~dinger equations instead of Eq.(8). In turn, these can be
formulated in terms of a dYnamic variational principle based on an action-
like (henceforth referred to as the action) functional

~ = ~[~,~'J s I dt <~'(t)l(ia/at - H)I~(t» (9)

Stationarity of A with respect to all variations in the independent states
I~> and <~'I (subject only to the vanishing of lo~> and <o~'1 at the
implied end-points of the time-integration in Eq.(9) -- usually t + ± 00),
then gives the correct Schr~dinger equations of motion,

(10)

We now show how various parametrisations of <~'I and I~> lead to
purely algebraic ways to generate many-body structures (diagrams) that can
very usefully be cast in the form of generalised tree diagrams. In particu-
lar, we compare and contrast three different (potentially exact) many-body
formalisms: (i) the configuration-interaction (CI) methodl, (ii) the
normal coupled cluster method (CCM},2-6 and (iii) the extended coupled
cluster method (ECCM).7,8 We shall show how the ECCM has many formal advan-
tages over the normal CCM, just as the normal CCM has many merits over the CI
method, as is by now very well known.4,6 In the later Sections we then
discuss the ECCM and some of its applications in more detail.

3'1. Configuration-Interaction Representation

In the CI method, I~> and <~'I are parametrised as,

I~> = FI~> = fd~crl(~)ct(OI~> ; <~'I = <~IF = f d~crl(O<~lc(O (11)

It is then easy to show that the action functional of Eq.(9) becomes,

Accr ,0 J
1 1

- A-
I

(12)

d~~ (~)cr (~) - R[cr ,0 J}
1 1 1 1
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H == R[a ,a ] - <~' IHI~> f d~ f d~'<~IHI~'>a (~)a (~t)
1 1 I I 1 '

<~IHI~'> = <tIC(~)HCt(~t)lt>
(13)

Requiring ~l to be stationary with respect to arbitrary small changes ina UJ and a (~'), then yields respectively the dynamical equations,
I 1

ia (0
1

ia co
1

(14)

The ground state is clearly given by
point,

oR oRI1 0
so (~) 001(01

oa (0
1

the (stationary in time) equilibrium

(15)

If the hamiltonian can be split into a sum of a one-body operator (kinetic
energy) part T and an interaction part V, H = T+V, and furthermore if the
configuration space has been chosen so that the states ct(~)I~> are eigen-
states of T, then it is easily shown that

<~t ITI~> == "Ita ,a ] == T = J d~ E(Ocr (~)a (~) + const., (16)
1 1 1 1 1

where E(~) is the extra kinetic energy of the configuration ct(~)I~> with
respect to the model state It>. Equation (15) may then be cast in the form,

a (~)
1

1

E(O
a (~)

1

1

E(O
(17)

where the factors E(~) appear in the usual guise of "energy denominators".
Equations (17) may be regarded as the Dyson equations for the functions
al(~) and 01 (~). Their solution by iteration leads to a set of terms which
can be recogn~sed as Goldstone diagrams.

The resulting CI equations, while simple, are known to have a very
serious drawback for applications to many-body systems. This hinges on the
fact that the diagrams for both al(~) and Ol(~) contain disconnected
pieces. A corollary is that both sets of amplitudes are strongly non-local
in the sense that they do not possess the cluster property+ e.g. al(tl'~2'
~3}-f+ 0 as ~3 is removed very far from both tl and x2. Although the
CI method is in principle exact, in practice it needs to be truncated, and
the disconnected (unlinked) nature of the amplitudes then leads to the well-
known "size-consistency" or "size-extensivity" problem.6 A further, more
minor, drawback to the method is that there is no manifest normalisation
built into it, viz. <~II~> ~ 1 necessarily (although Eq.(lO) does guarantee
that (d/dt)<~tl~> = 0). Nevertheless, the CI method has often been used in
few-body applications, especially to problems in the realm of quantum chemis-
try.

3·2. Normal Coupled Cluster Representation

The roots of the coupled cluster method (CCM) date back to Hubbard9 who
realised that the problems associated with the disconnected nature of the
operator F in Eq.(ll) could be rectified by writing F in the form
F = exp(S) , where S contains only linked terms; and whence follows the
linked cluster theorem of GoldstonelO for the ground-state energy. So long
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as we are only interested in the ground state energy E, the static
5chrodinger equation (8) may be written in the form,2

-5 51e He 4» (18)

The overlap of Eq.(18) with <~I gives E itself, while the overlaps with
the states <~IC(s) give the normal ground-state CCM hierarchy of equations
that fully determine the operator 5. When we need expectation values of
operators other than H, it becomes necessary also to involve the state
<~'I. In the normal CCM, the parametrisation of the bra and ket ground states
is given as,

I~> 5
(19)

<~, I
which may be compared with the equivalent CI expressions (11). It is immedi-
ately clear from Eq.(19) that,our ground states are manifestly normalised,
<~'I~> = 1. Inserting from Eq.(19) into the action functional of Eq.(9)
leads to the expression,

A-[a ,cr] - A
2 2 2 (20)

liIa ,cr ]
2 2

H
2

I -5 51<~ lie He ~> (21)

and where we note that the fact that the creation and annihilation subalgebras
are Abelian makes the taking of the relevant derivatives above very easy.

e
We may now define an average-value functional for an arbitrary operator

as,
<~'Ial~> _ 0[a ,cr ] = 0 = <~lne-5ae51~>2 2 2

N IL -- <~Ill[ ••• [[a,5],5], ••• 5]1~>
n=o n!

(22)

where in the well-known nested commutator expansion employed in Eq. (22), the
operator 5 appears n times. If a is a symmetrised sum of j-body operators,
then the upper limit on the sum becomes N = 2j. Formally we may write,

0[0 ,cr] I ~-l-fdl; I'dl;'···I'dl;'<I; lall;'••• s'>
2 2 m=o n=o m!n! 1 1 n m 1 n

x 0' (I; )a (1;') ••• a (1;'), (23)2 1 2 1 2 n
where, by comparison with Eq.(22) , the matrix elements may be written schema-
tically as

<I; leis' ••• s'>
1 1 n

(24)

and where the suffix i. on these matrix elements indicates the very definite
linked structure implied by Eq.(22).

With this notation, the stationarity of v4{ with respect to small vari-
ations in a2(1;) and 0'2(1;) then yields dynam1cal equations of precisely
the same form as in the CI equations (14), but with all (CI) indices I
replaced by (normal CCM) indices 2. At the equilibrium point, the ground
state is again similarly given as in Eq.(15), which equations now reduce to
the form,
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<~IC(~)e-SHesl~> = 0 ~ ~ 0

<~IQ[e-SHeS , ct(OJI$> = 0
(25)

which determine the static amplitudes a2(~) and 02(~)' We find that the
Dyson equations for a2,a can again be put in similar form to the CI equa-
tions (17), but a big difterence now arises from the replacement VI + V2•
Thus in the present case the resulting diagrams for the energy are fully
connected, as indeed are the diagrams for a2(~) as expected from our earlier
remarks on the linked-cluster theorem. However, 02(~) still contains dis-
connected terms, and remains problematic. Of course if we restrict ourselves
to the energy, then the amplitudes 02(~) are not needed, as already men-
tioned. However, problems still remain for the expectation values of arbit-
rary operators.

Very related to the above discussion is the concept of "generalised time
ordering" (g.t.o.), which is a useful tool for classifying and combining
classes of Goldstone diagrams.11,7 This technique is based on the factorisa-
tion property of disjoint sets of legs of a Goldstone diagram, and leads to
the factorisation of corresponding energy denominators across such legs when
all permitted time orderings are included. The normal CCM generates diagrams
for the energy with a g.t.o. in the "downward" direction (Le. backwards in
time) only. The diagrams for the expectation value of the hamiltonian can
thereby be represented by what we now call "normal: g. t.o. trees" or "normal:
CCMtrees". These are diagrams which "branch out" in the downward direction
only (-- thus resembling the root system of a real tree rather than the
visible tree structure!). As explained elsewhere,7 each link or branch (i.e.,
root!) in such a diagram corresponds to a definite set of particle/hole lines
associated with the configuration ~ of the corresponding state ct(~)I~>.
If such a (downward) tree diagram for the energy (the totality of which give
the normal CCM expression), is divided into two by cutting one link, the
lower part (which constitutes a diagram associated with some amplitude
a?(~» will always be linked, whereas the upper part (which constitutes a
d1agram for the corresponding amplitude a2(~» may be unlinked. For further
details we refer the interested reader to the by now quite extensive litera-
ture on the normal CCM and its applications.4-6,12-1S

3'3. Extended Coupled Cluster Representation

For reasons already alluded to above, the normal CCM has been almost
wholly concerned with energy calculations. There are virtually no calcula-
tions involving average-value properties of other operators. In such cases,
the unlinked nature of the operator Q (or equivalently its amplitudes
02(~» may well lead to computational difficulties·in the case of practical
(i.e. , truncated) calculations. Just as in passing from the CI method to
the normal CCM we cured the al(~) of their disconnectedness by their rep-
lacement with a2(~)' so the extended CCM (ECCM) aims to cure the remaining
disconnectedness in 02(~)' This is achieved by the following ECCM paramet-
risation,

11f> S
e I~> s = r d~ s(oct(~)r dl;; 0

3
(I;;)C co

(26)

<'l"I S" -s<$Ie e s" =

which may be compared with its normal CCM counterpart in Eq.(19). Just as in
the normal CCM, the coefficients o?(~) are the (unlinked) average values of
the creation operators, a2(~) = <'l'Tlct(~)I'l'>,so now it can be shown that
the linked parts of these averages are precisely the new amplitudes 03(1;;).
Again, the ground states are trivially observed to be manifestly normalised,
<1f'I'l'>= 1. An average-value functional of an arbitrary operator e now
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takes the form,
Ae == <'!"lei'!'>= <<I>lel<l» (27)

Ain terms of the (doubly) similarity-transformed operator e,
A S" -S S -S"e == e e ee e (28)

Finally in the ECCM, it turns out to be very convenient to define a new oper-
ator L,

S"CJ (0 == <<I>IC(l;)e S I<1»
3

(29)

which has an inverse transformation,
-S"sl<I» = e LI<I» (30)

Insertion of the above parametrisation into the action functional of
Eq.(9) gives again a form analogous to that in Eqs.(12) and (20),

A[CJ ,0 J ==it
3 3 3

J dt {iJ'dso (s); (s) - H[CJ ,0 J}
3 3 3 3

(31)

The variational principle again leads to the dynamic equations,

iCJ (s)
3

iif co
3

(32)
oCJ (s)

3

The expression for H3 == H[CJ ,03J is now more complicated than before. The
general form"of an arbitrary3average-value functional 0 can now be shown
to be given by,

L _1_ J'ds ••·J'ds J'ds''''J'ds'<s '''s lels""s'>
m,n m!n! 1 m 1 n 1 m 1 n

x o(s )···~(s )CJ(s')"'CJ(s') ,(33)
1 m 1 n

in which the matrix elements, expressed schematically by the expression,

8[CJ ,0 J _ e
3 3 3

<s '''s lels''''s'> = <<I>IC(s)"·C(s )0Ct(S')"'Ct(S') 1<1» (34)
1 m 1 n 1 m 1 n tJlv

have a very definite linked (eL) structure, as can be found by explicit cons-
truction, and as explained in detail elsewhere.7 We note here only that the
matrix elements of Eq.(34) are not all independent, in the sense that one may
find definite recursion relations between them. Particularly useful in this
respect is the identity,

003 ,'a r E 0203 3+ dn CJ (S+I)
ocr (s+s') ocr (s)oa(s') 3 oCJ (n)6; «:)

3 3 3 3 3

,'a ~. . 0203
(35)

+ 3 CJ (n+s') + f dl)f dn'CJ (s+n) CJ (I)'+s')
OCJ (OoCJ (I) 3 3 OCJ (I)oCJ (n") 3

3 3 3 3

Such relations as Eq~35) in the ECCM are most easily proven by starting with
the average value functional 8 written as a functional of the operators
S" and S; and then making the change of 'variables' to the operators S"
and L in the usual partial differential sense, as discussed further in
Section 4.
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As usual, the energy functional H = <~rIHI~> now plays the particu-
larly important role, through Eq.(32), of determining the dynamics of the
amplitudes 03(1';) and a3(~r), and their equilibrium values. The kinetic
energy operator T has an average value functional which, after some algebra,
can be expressed in terms of these amplitudes as,

'T[o ,a J = <4>IS"TEI4» = const. + frd~E(~)a (~)o (O (36)
3 3 3 3

Comparison with Eq.(16), and the discussion following it, again shows that at
equilibrium the values of 03,'03 represent the contributions of definite
classes of Goldstone diagrams. These may again be conveniently classified
in terms of extended g.t.o. trees.7 By comparison with the normal CCM, these
extended CCM tree diagrams now branch upwards as well as downwards at any
vertex. The average value functional for an arbitrary operator may then
uniquely be expressed in terms of such extended g.t.o. tree diagrams. A con-
sequence is that if any such extended tree diagram for the energy is divided
into two by cutting any single link, both the top part (which is a diagram for03) and the bottom part (which is a diagram for 03) now separately remain
connected diagrams. In this way, now all of our basic amplitudes 03(~) and
a3(~) in the ECCM are quasi-local in the sense that they obey the e~uster
property, namely that if any subset of the particles incorporated in the con-
figuration-space labelling ~ is removed infinitely far from the remainder,
the amplitude goes to zero.

In the remainder of this paper we now deal only with the extended CCM
and investigate some of its consequences and uses. We therefore now drop the
suffices 3, and henceforth rename 03(~) -+ a(~};03{~}-+ o(~).

4. FUNCTIONAL DERIVATIVES AND MATRIX ELEMENTS

Neither the normal nor extended version of the CCM is manifestly hermi-
tian. In the ECCM with which we are now concerned, this ultimately derives
from the fact that the {double} similarity transformations which generate the
ket and bra ground states are not unitary. Thus the formalism is actually a
biorthogonal formulation of the many-body problem, and the functional e of
Eq.(27), for an arbitrary operator e, represents the real expectation value
functional, in view of the definite normalisation <~rl~> = 1.

For further development of the ECCM formalism, we will have need for
various matrix elements involving the doubly similarity-transformed operatoro of Eq. (28), and we now point out and exploit the intimate connection
between such matrix elements and the functional derivatives of the average-
value functional e. It is clear from our earlier discussion that it is
easiest to compute 0 in the first place as a functional of the operators
Sand S",

S••-S Se <4>le e 0e 14» (37)

where we have used Eqs. (27) and (28), and the fact that S••is built only from
annihilation operators, as in Eq.(26). FrQm Eq.(37) we may thus express the
average-value functional in the form e = 0[s,aJ, using Eqs.(26), where the
double-bar notation simply reminds us of the functional arguments. It is
then trivial to see directly from Eq.(37) that the first-order functional
derivatives in this representation are given by,

08 = <4>IC(~)@I4»
oo(~)

06
os(~)

S •• -s t S<4>le e [e,C (~)Je 14» (38)

Finally, we may "change variables" from the operators S,S" to E,S" using
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Eq.(29) to give equivalently 0 -. 0[0,oJ - 9[s,crJ. Making use of the usual
chain rule of partial differentiation, we readily find,

00 = 00 + I'dl;'O(I;+I;')00 00 _ J'dl;'W(I;-I;')00 (39)
00(1;) ocr(l;) 150(1;') oS (I;) 00(1;')

where we have used the notation of Eqs.(5) and (6) to compound the configura-
tion space indices; and where the amplitude w(l;) and a comparable amplitude
w(1;) needed later, are defined as,

S" tw(l;) = <~Ie C (I;)I~> (40)

These latter amplitudes are easily seen to obey the orthogonality relations,

fdnw(l;-n)w(n-I;')= 0(1;-1;')= fdnw(l;-n)w(n-I;') (41)

We also note in passing that our previous Eq.(35) is proven by_making
r~peated use of Eq.(39) together with the trivial relation 1520/150(1;)150(1;')=
00/150(1;+1;'),which follows immediately from Eq.(38).

The combination of Eqs.(38) and (39) immediately gives that for an arbi-
trary operator A,

--- +
oA (42)

Relatively straightforward algebra using the above relations and judicious
insertions of the identity operator from Eq.(2), also leads to other compar-
able expressions involving matrix elements of the operator A being able to
be written in terms of functional derivatives of the average-value functional
A = A[o,crJ. As a further example, we simply quote the result (valid for
I; ;10 0),

- '- "-
<~lict(l;)I~> = ~ + I dn ~L(nl;) + I dnJ dn'~ o(n+n')L(n'l;) ,

00 (I;) 00 (n) 00 (n) '. (43)
where the function L(I;I;')= L(I;'I;) is defined as,

- - S" t tL(I;I;')= fdnfdn'w(n+n')w(l;-n)w(I;'-n') = <~Ie C (I;)C (I;')I~~L (44)

In a similar fashion one may evaluate higher matrix elements in terms of
higher-2rder functional derivatives, e.g. the matrix element
<~IC(I;)ACt(I;')I~> will involve second-order derivatives. Evaluation of
these higher elements is often faci1itcttedby a judicious use of Wick's theorem
in the form of Eq.(7).

4·1. Average Values of Operator Products

As a nice example of the above techniques we now turn to the very impor-
tant topic of the representation in the ECCM of operator products. It is
clear that products of operators transform under the double similarity trans-
formation of Eq.(28) into the corresponding product of transformed operators,
and therefore that their average values can be represented in the ECCM as,

<'!"10 0 ••• 0 I'!'>= <~ I@ @ • •• @ I~>
12 n 12 n

(45)

If, on the right-hand side of Eq. (45), one inserts the identity operator from
Eq.(2) between each adjacent pair of operators, we may thereby express such
average values in terms of first or second functional derivatives of the
average values of the individual operators. For present purposes we restrict
ourselves to what is in any case the most important example of the product of
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two operators. In this case we need only first-order derivatives, and
(42) and (43) suffice. In this way we may easily evaluate the average
AB = <~'IABI~> = <AB> as,

AB = A·B + rdE;(dE;' [~:~E;) ocr~:') X11(E;E;')

Eqs.
value

OA oB+ -- ----'-'=---- X (E;E;')
ocr(E;)oa(E;') 12

of: oB+---~-X (E;E;')
oa(E;) ocr(E;') 21

oA OB ~+ -- --=..:=--- X (E;E;')
oo(E;) oo(E;') 22

(46)
where the X-coefficients are given by the expressions'

X (E;E;')11 X (E;'E;)
11

c (E;+E;' )+f' dqf' dn 'cr(E;+q}L(l1l1'}cr(l1,+E;') ,

X (E;E;') = X (E;'E;) = L(E;E;')
22 22 '

o(E;-E;')+f'dl1cr(E;+l1)L(l1E;'); X (E;E;') = f'dl1L(E;l1)cr(l1+E;')
21

(47)
X (E;E;')

12

5. COMMUTATORS AND GENERALISED POISSON BRACKETS

As a particularly important application of the results of Section 4·1,
we now consider the expectation value of the commutator of two operators.
In view of the high degree of symmetry exhibited in Eq.(47) by the X-coeffi-
cients, there is a considerable consequent simplification in this regard. We
find,

<~' lAB - BAI ~> - <[A,B]> = HA,B} (48)

where the generalised Poisson bracket {A,B} is defined as,
,

i{A,lD _ f dE; [OA oB - oB oA J
ocr(E;)oa(E;) ocr(E;)oo(E;)

(49)

We can make these results even more suggestive by choosing as new basic (quasi-
local) field variables, the generalised fields $(E;) and their canonically
conjugate generalised momentum densities n(E;) , defined as,

(50)

In this way we can re-define our average values <A> = A -7 A[$,nJ, in
terms of which Eq.(49) becomes

f' [OA oB oA oB ]{A,iD = dE; 0$(0 on (0 - on (0 0$(0

The equations of motion (32) for the amplitudes cr,o are thereby re-cast
into the form,

(51)

oR
- o$(E;) {n (0 ,ii} (52)

Finally, for an arbitrary, intrinsically time-dependent operator A(t), it
is easy to show using E~.(52) that the equation of motion for its average-
value functional <A>'= A[$,n;tJ is,

M < aA > + {A H} = < aA > + .!. <[A HJ> (53)
dt at ' at i '

Equation (53) shows both that the equation of motion is indeed the proper
quantum-mechanical one, and that the connection to classical physics arises
through a very well-defined, suitably generalised version of the correspon-
dence principle.
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We are thus led to the very important result that the whole of our
quantum many-body problem has formally been exactly mapped onto the classical
Hamiltonian mechanics for the (c-number) quasi-local fields $(~) and n(~)
which are themselves functions in the many-body configuration space labelled
by the indices ~. In this way we can take over (or suitably extend) the
whole of the classical formalism to describe (exactly, in principle, if no
truncations are made) the quantum many-body system. In particular we can
make easy contact with such things as conservation laws and the associated
sum rules3 through the corresponding Noether currents.

6. EXACT BOSONISATION AND GENERALISED COHERENT STATES

It comes as no surprise that the ECCM when truncated at its lowest
obvious level of approximation (-- namely, the so-called SUBI approximation
wherein in the expansions (26) and (29) for S" and E, the 'sums over
configurations' are restricted to one-body (i.e. one particle or one particle-
hole) configurations ~), is precisely equal to the mean field theory or
semiclassical approximation.7 For the bosonic systems which have mainly been
emphasised here, this is precisely the ordinary coheFent-state approximation
(while for fermionic systems it is just the Hartree-Fock approximation). We
briefly remind the reader how the mean field approximation for bosons can be
expressed in terms of the (classical) atomic or ordinary coherent states of
Glauber.16,17 In terms of a complete set of our original single-boson crea-
tion operators in}e, say at(*), (and see the discussion surrounding
Eqs. (la,b», the Glauber coherent states are defined as

jy> r -+- -+- t-+- -+- -+- tfdx[$(x)a (x) - $*(x)a(x)J = - r (54)

where $(~) and its complex conjugate $*(~) are scalar (i.e. c-number)
fields, and with I~> the vacuum, a(~)I~> = 0, as before. It is straight-
fo¥.ward to show that these states are eigenstates of the destruction operator
a(x), -+- r r -r t -+-a(x)e I~> $(~)e I~> <~Ie a (x) -+- I-r$*(x)<~ e (55)

We can then also use Eq.(55) to show rather easily that the expectation value
of a suitably normal-ordered arbitrary operator 8 = : 8[a,at]: in thfse
coherent states is just given by replacing the field operators a(~),a (~)
in She functional by their c-number coherent-state expectation values $(~),
$*(x) respectively:

<8>r - <~Ie-r: 8[a,atJ : erl~> 8[$,$*J (56)

In particular, the static mean field approximation is obtained by minimising
<H>r with respect to the one-body fields $(~),$*(x).

In the light of the discussion in the previous Section, it is now natur-
al to enquire whether our entire formalism can also be exactly recast as a
geneFalised mean field theory in terms of a well-defined set of (fictitious)
ideal coherent boson83 whose appropriate expectation values (defined suitably
in their own Hilbert space) equal the (many-body) "classical"fields a,a.
The basic configuration space operators C(~), ct(~) are definitely not can-
didates for the annihilation and creation operators associated with these
ideal bosons, both because their expectation values are generally much more
complicated functionals of a(~) and a(~), and because their commutation
relations are also generally not those of ideal bosons. Instead, we simply
attempt to map the original many-body Hilbert space 1t onto some fictitious
boson Hilbert space 1{B. In view of the biorthogonal nature of our previous
formulation, we now postulate the existence in itB of vacuum states I~B>
and <~'BI, and ideal boson operators A(~), A(~) associated with each
configuration ~, such that
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[A(~) ,A(~')]

A(O I<!IB>
o [A(O ,A(~')]

<<!I' BIA(~)

[A(~) ,A(~')]
(57)

o

Furthermore, for every operator e in &t we now associate its boson
image eB in J.tB, defined as:

I _1_ f'd~ ••• f'd~ f'd~' ••• f'd~'<~ ••• ~ lel~' ••• ~'>
m,n m!n! 1 m 1 n 1 m 1 n

x A(~ )
1

by analogy to Eq.(33), and with matrix elements exactly as specified in Eq.
(34). By analogy with Eq.(54) it seems reasonable to consider a setBof genep-
alised cohepent states (or, more properly, bi-coherent states) in ~ , defined
as

eGI<!I > <'I" I <<!I' le-G
B B - B

f'd~[a(~)A(~) - o(~)A(~)]
(59)

which are to be interpreted as the images in GtB of the corresponding states
1'1'>and <'1"1 in it. The generalised coherent-state expectation value of
eB can be shown, by precise analogy with our previous atomic coherent state
result of Eq. (56), to be identically equal to the earlier expression in Eq.
(33),

<<!IBle-GeBeGI<!IB> 0[a,;] (60)

Finally, we are led to consider the generalised coherent-state action func-
tional AB, defined in -t-{Bto be the image of the action A- of Eq ,(9) in
I-e, .,AB

(61)

By making use of the result,
-G d G

e at e

which follows from Eqs.(59) and (57), ~e finally find the result that ~B
has an identical form to our earlier results in Eqs.(12) and (20), and most
particularly in Eq.(3l);

.
f'd~{a(~)A(~) - cr(~)A(~) + ~[a(~);(~)- a(~)a(~)]} (62)

(63)

Hence, a variational principle in {tB applied to the action ~B, exactly
reproduces our previous exact equations of motion (32) in {t for the ECCM.
These results are discussed further in Section 7.

7. SUMMARY AND DISCUSSION

We have shown how a variational principle for our action functional of
Eq.(9) enables quantum many-body theory to be written in the form of classi-
cal hamiltonian mechanics for the many-body (c-number) configuration-space
amplitudes a,o for each of the CI method, the normal CCM and the extended
CCM. Only in the latter case are all of these fields quasi-local in the
sense of obeying the cluster property. In any realistic calculation, each of
these methods must be truncated, e.g. in the so-called SUBn approximation
by restricting the configuration indices ~ to at most n particles (or
particle-hole pairs). In the CI method, the limbs of the associated CI trees
would need to be very thick (large n), unless the interaction is so weak that
low-order perturbation theory suffices. By contrast, the normal and extended
CCM always perform such various infinite-order summations of Goldstone
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diagrams, even for low n, that the CCM trees need not be so thick for good
energy results.

However, the results are still in principle quite dependent on the choice
of model state I~>. The normal (ground-state) CCM may miss altogether a
phase of the system with same broken symmetry not built into I~>. One of us
has shown1B how this may be overcome within the normal CCM by constructing
new model states I~I>, using a combination of the excited-state CCM forma-
lism of Emrich15 to search for "de-excited states" of lower energy than in
the ground-state formalism discussed here, and the maximum-overlap stability
criterion of KWmmel.19 In the extended CCM, the hope is that the limbs of
the generalised trees can again be relatively slim for good approximations,
but by contrast the hope has been expressed7 that the model state I~> can
remain the naive (symmetry-conserving) vacuum state even in the broken-
symmetry phase. This is certainly true at the fermion SUBI level, for example,
where the normal SUBI approximation does not produce the correct deformed
Hartree-Fock state, whereas the extended CCM at SUBI level does. The clear
hope is that since the ECCMeasily permits symmetry-breaking to be incorpor-
ated by introducing suitable symmetry-breaking amplitudes a,a with a givenI~>, it will find future applications to such topological excitations as
vortices in liquid helium. Our formalism also permits applications to non-
equilibrium phenomena, and to nonlinear behaviour far from equilibrium.

We turn now to the implications of our new bosonisation procedure dis-
cussed in Section 6. We note that there is a very long tradition in the
bosonisation of spin-algebraic or fermionic systems. As examples of the ~enre
we mention the methods of Holstein and Primakoff,20 Dyson,21 Schwinger,2 and
others;23,24 and refer the reader to the review by Garbaczewski.25 In most
previous procedures the philosophy has been to establish an exact equivalence
between the Lie algebra of the spin operators or suitably chosen pairs of
fermion operators, and the Lie algebra of canonical boson operators in an
ideal boson space. It usually transpires that the boson Hilbert space is too
large, in the sense that physically realisable states in the original Hilbert
space map only onto a subspace of the boson image space. The aim is that
with a judicious choice of mapping, the lOW-lying collective excitations of
the original system might be treated (semi-) classically or nearly so in the
mapped space, in the sense that as a zeroth approximation ~he ideal bosons
can be treated as non-interacting. Further, one hopes that to go beyond
zeroth order, the residual interactions (in the usual quantum-mechanical
sense) are weak enough to be easily treated by conventional means in the
boson space. Generally, however, the boson interactions are far from trivial,
and the formalism is still a relatively complicated theory of interacting
bosans in a projected subspace of an ideal boson space.

By contrast, our own bosonisation procedure differs in at least three
ways. In the first place, no effort is made to preserve the Lie algebra.
Secondly, whereas earlier bosonisation schemes have been applied only to
fermion or spin systems, ours may equally be applied to boson systems. Our
bosonisation procedure transforms the original boson (or other) theory to an
effective boson theory which is to be used at mean-field level (with only
classical interactions between the bosons). Clearly, therefore, it cannot
be bosonised any further! Thirdly, whereas in the earlier bosonisation
schemes, the physical states map onto a subspace of the image space ~B, B
here the generalised coherent states form only a subset of the states in Jt .
In this way we lose the superposition principle in the mapped physical space.
The ultimate reason for this is the strongly coherent form adopted for our
ground-state trial wavefunctions in Eqs.(26), which means that only the
ground state and those adiabatically excited states which are strongly collec-
tive, are easily so describable.

With regard to this latter point, it is quite possible to develop further
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the ground-state ECCM to include excited states in very much the same spirit
as Emrich15 has developed the normal CCM. The upshot is that the excited
states and their excitation energies can be found by solving a linear eigen-
value problem to diagonalise an operator built from second-order functional
derivatives of H, evaluated at the equilibrium point. Likewise, our time-
dependent formalism enables us to treat the same problem via the dynamics of
small oscillations around the stationary equilibrium. This dynamics is again
governed by an effective hamiltonian obtained by linearising the equations of
motion (32) around the stationary point. In this way we can build up a set
of generaZised random phase approximation (RPA) equations in configuration
space, with two main differences from the ordinary RPA.26 Firstly, the con-
figuration indices ~ are arbitrary, and not restricted to just one particle
(or particle-hole pair) as in ordinary RPA; and secondly, when no such trun-
cations are made the resulting generalised RPA equations are exact.

Further details and applications of both the present work and the exten-
sions mentioned above, will be published elsewhere.27,28
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